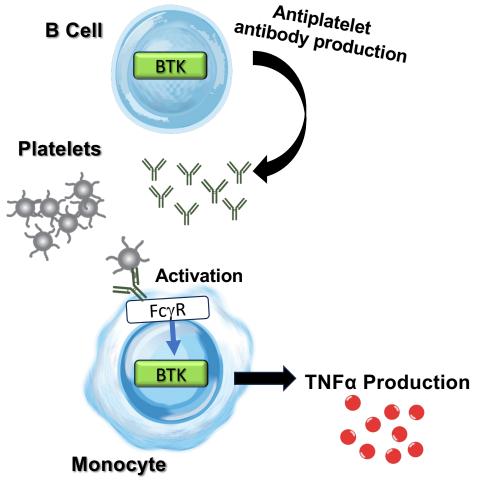


<u>Tomás Jose Gonzalez Lopez</u>¹, W. Ghanima², N. Brown³, J.R. Manro³, W. Blosser³, A. Capen³, J. Schroeder³, X. Gong³, P. McDonnell³, Y. Koh³, J. Pauff³

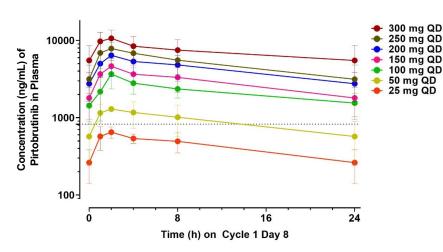

¹Department of Hematology, Hospital Universitario de Burgos, Burgos, Spain^{; 2}Department of Research and Haemato-Oncology, Østfold Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; ³Eli Lilly and Company, Indianapolis, IN, USA.

PRECLINICAL ITP CHARACTERIZATION OF PIRTOBRUTINIB: A NON-COVALENT, REVERSIBLE, BRUTON TYROSINE KINASE INHIBITOR

Disclosures of Tomás José González-López

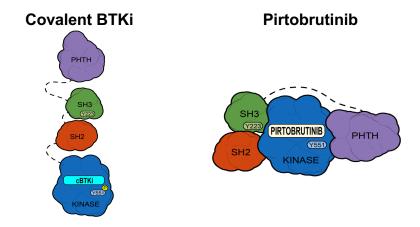
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis	x		X		x	x	
Amgen	X		X		X	X	
Grifols	X		X		X	X	
Sobi	X		X		X	X	
Argenx			X		X		
UCB			X		X		
Alpine			X		X		
Momenta			X		X	X	

Bruton Tyrosine Kinase (BTK) Role in Key Mechanisms of ITP Pathology


- B cells play a key role in ITP through the production of antiplatelet-antibodies¹⁻³
- Binding of the platelet-bound antibodies to FcγR on monocytes leads to their activation that potentiates the autoimmune response¹⁻³
- Pirtobrutinib previously demonstrated dose-dependent inhibition of B cell activation⁴ and warrants further study of pirtobrutinib as a therapeutic option for ITP

Selective BTK inhibition may impede multiple mechanisms in ITP

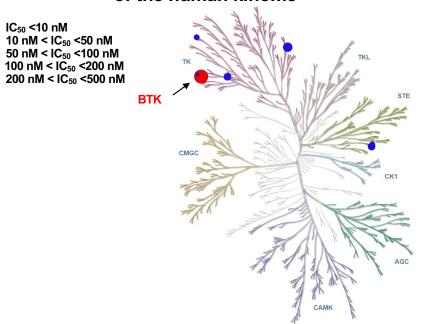
1Cooper et al. NEJM 2019. 2Audia et al. J. Clin. Med. 2021. 3Cines et al. NEJM 2002. 4Gomez et al. Blood.2023. Abbreviations: BTK, Bruton Tyrosine Kinase; TNF, tumor necrosis factor, FCyR, Fc gamma Receptor.


Pirtobrutinib is a Non-covalent, Reversible, BTK Inhibitor with Unique PK Properties and Binding Mechanism

Plasma exposures throughout dosing interval⁵

Half life, hours ^{6,8-11}				
Pirtobrutinib	19			
Rilzabrutinib	3-4			
Zanubrutinib	2-4			
Acalabrutinib	1			
Ibrutinib	4-6			

Pirtobrutinib may stabilize BTK in a closed inactive conformation⁴



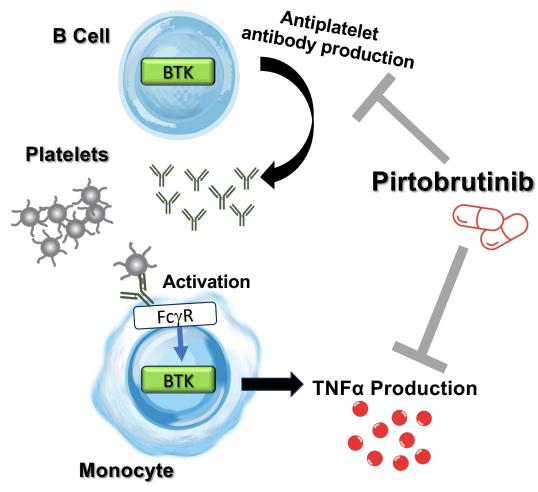
- Pirtobrutinib, when dosed at 200 mg once daily, produces steady state plasma exposure corresponding to 96% BTK target inhibition⁴ and a half-life of 19 hours⁶
- Pirtobrutinib is approved for treating relapsed or refractory MCL in adults in the EU (EMA Conditional Approval, Oct 2023) after prior treatment with a BTK inhibitor,⁷ and in the USA (FDA Accelerated Approval, Jan 2023) after at least two lines of systemic therapy, including a BTK inhibitor, and for adult patients with CLL/SLL (FDA Accelerated Approval, Dec 2023) who have received at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor⁶
- Pirtobrutinib inhibits BTK activity by:
 - Binding to BTK via an extensive water-mediated hydrogen bond network, unlike covalent BTKi that rely on Cys481 (shared by 9 other kinases)⁴
 - Potentially stabilizing BTK in a closed, inactive conformation, blocking access to upstream kinases and phosphorylation of Y551, inhibiting kinase-independent BTK signaling⁴

⁴Gomez et al. *Blood*.2023. ⁵Mato et al, *Lancet* 2021. ⁶Jaypirca [Prescribing Information]. Indianapolis, IN, 2023, 2024. ⁷Jaypirca EPAR (EMEA/H/C/005863), European Medicines Agency, 2023. ⁸Ucpinar et al. *Clin Transl Sci.* 2023. ⁹Brukinsa [Prescribing Information]. San Mateo, CA: BeiGene, 2024. ¹⁰Calquence [Prescribing Information]. Wilmington, DE: AstraZeneca, 2022. ¹¹Imbruvica [Prescribing Information]. South San Francisco, CA: Pharmacyclics LLC, 2024. Abbreviations: CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; QD, once daily; SLL, small lymphocytic lymphoma.

Pirtobrutinib Demonstrates High Selectivity for BTK

Pirtobrutinib was highly selective for BTK in >98% of the human kinome⁵

Selectivity of BTK Inhibitors in Biochemical Assays


	% Enzyme Activity⁴					
	Pirtobr	utinib	Ibrutinib	Zanubrutinib		
	1000 nM	100 nM	100 nM	100 nM		
втк	1.8	3	1.1	2.7		
ITK	103.4	106.1	2.3	85.2		
RLK	19.6	68.4	-0.1	0.4		
TEC	64.6	97.2	3	8.9		
BMX	70.2	94.6	-0.1	2.5		
BLK	72.8	81.7	0.6	-0.4		

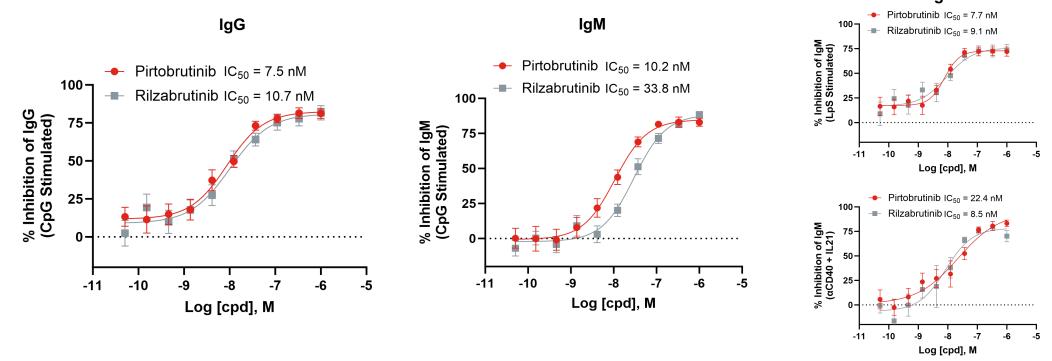
Kinase Assay					
Pirtobrutinib	Rilzabrutinib ¹²				
IC ₅₀ , nM	IC ₅₀ , nM				
3.2	1.3				
>5000	440				
209	1.2				
1234	0.8				
1155	1.00				
4100	6.3				

- In follow-up cellular studies, pirtobrutinib retained >100-fold selectivity over other tested kinases, including selectivity for BTK over other TEC family member kinases (ITK, RLK, TEC, & BMX) where covalent BTKi have failed to maintain selectivity¹²
 - Pirtobrutinib only inhibits BTK (IC₅₀) at single-digit nanomolar concentrations, whereas rilzabrutinib inhibits 4/5 TEC family kinases at single-digit nanomolar concentrations
- Pirtobrutinib has shown favorable safety and tolerability in the oncology setting with low-rates of discontinuation due to toxicity^{13,14}

¹²Langrish et al, J Immunol 2021. ¹³Coombs et al, JCO 2022. ¹⁴Nirav et al, JCO 2023

Methods Assessing Pirtobrutinib in ITP

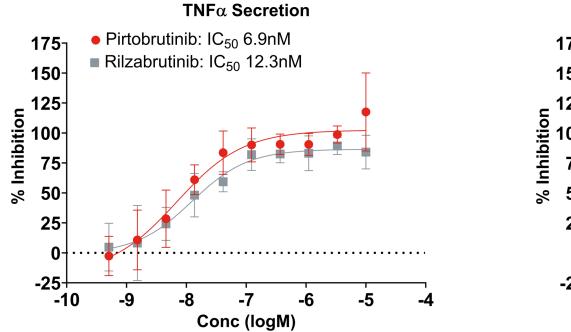
In Vitro

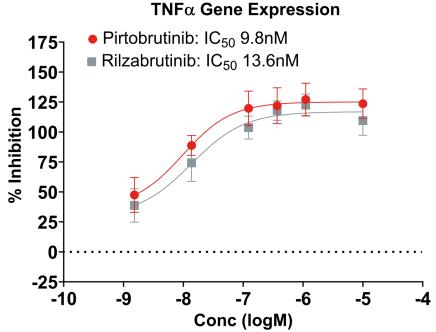

- Human B cells and monocytes were treated with pirtobrutinib or rilzabrutinib for one hour before stimulation to assess:
 - Antibody production
 - TNFα release and gene expression

- Prior to antibody mediated platelet depletion, BALB/c Mice (n=7-8/group) were treated with either:
 - Pirtobrutinib (PO, 10 or 30 mg/kg)
 - Vehicle (PO, 0.5%methycelluose/0.5%tween80/water)
 - IVIG (IV, 1000mg/kg)

Abbreviations: BTK, Bruton Tyrosine Kinase; FCγR, Fc gamma Receptor; PO, by mouth; TNF, tumor necrosis factor

Pirtobrutinib Inhibits Key Mechanisms of ITP pathology: B cell antibody production

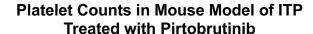


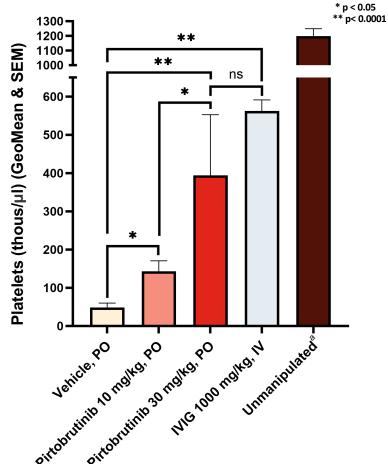

- Human B cells from 5 donors were treated with pirtobrutinib or rilzabrutinib (1μM-0.05nM) for one hour before stimulation with cytidine-guanosine dinucleotides, LpS, or αCD40 and IL21 for 7 days
- Secretion of IgM and IgG were reduced with pirtobrutinib treatment
- Secretion of IgM was reduced with pirtobrutinib treatment independent of stimulation condition

Antibody production was measured via ELISA. Abbreviations: IgG, immunoglobulin; IgM, immunoglobulin M.

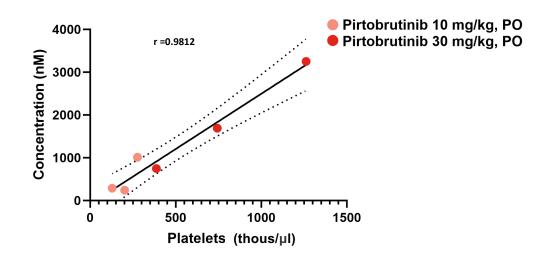
Pirtobrutinib Inhibits Key Mechanisms of ITP pathology: Antibody-dependent Monocyte Activation

Pirtobrutinib potently inhibited both TNFα release and gene expression from human monocytes stimulated with antibody immune complexes





FCγR signaling was activated on human monocytes through treatment with antibody immune complexes


Abbreviations: ITP, Immune thrombocytopenia; FCγR, Fc gamma Receptor; TNF, tumor necrosis factor

Pirtobrutinib Increased Platelet Counts in a Mouse Model of ITP

Linear Regression of Pirtobrutinib Blood Concentrations and Platelet Counts

- Pirtobrutinib blood concentrations increased as dose increased and had a positive correlation with platelet response
- Pirtobrutinib significantly and dose-dependently increased platelet counts in mice relative to vehicle treated control mice
- Statistically, the high dose level (30 mg/kg) of pirtobrutinib was not significantly different from the positive efficacy control group, IVIG

reciens to trie set of finite from the same cohort that did not have thrombocytopenia induced. Abbreviations: ITP, Immune thrombocytopenic; IVIG, Intravenous Immunoglobulin; IV, intravenous; PO, by mouth; thous/uL. thousands per microliter.

Conclusion

- Pirtobrutinib is a highly selective, non-covalent, reversible, BTK inhibitor showing efficacy and tolerability in B-cell malignancies, leading to approvals in CLL/SLL and MCL
 - Its optimized pharmacokinetic properties ensures high levels of sustained BTK inhibition over 24 hours with once-a-day dosing
- In vitro, pirtobrutinib reduced B-cell activation, antibody production, and FcγR-mediated TNFα production in human monocytes
- In a mouse ITP model, pirtobrutinib concentrations increased with dose and positively correlated with platelet response. The high dose (30 mg/kg) had similar positive efficacy as control group, IVIG
- To our knowledge, this is the first preclinical report of a non-covalent BTK inhibitor's effect on platelet response in ITP
- These data, combined with existing data demonstrating pirtobrutinib's selective and potent BTK inhibition, support further clinical investigation of pirtobrutinib for ITP treatment

Acknowledgements

Medical writing support was provided by Abby Atwater, PharmD, RPh, and Alyson Essex, PhD